OCR Nachkorrektur des Royal Society Corpus

Carsten Klaus

Universität des Saarlandes, Saarbrücken, Deutschland

Peter Fankhauser

Institut für Deutsche Sprache, Mannheim, Deutschland

Dietrich Klakow

Universität des Saarlandes, Saarbrücken, Deutschland

We present an approach for automatic detection and correction of OCR-induced misspellings in historical texts. The main objective is the post-correction of the digitized Royal Society Corpus, a set of historical documents from 1665 to 1869. Due to the aged material the OCR procedure has made mistakes, thus leading to files corrupted by thousands of misspellings. This motivates a post processing step. The current correction technique is a pattern-based approach which due to its lack of generalization suffers from bad recall.

To generalize from the patterns we propose to use the noisy channel model. From the pattern based substitutions we train a corpus specific error model complemented with a language model. With an F1-Score of 0.61 the presented technique significantly outperforms the pattern based approach which has an F1-score of 0.28. Due to its more accurate error model it also outperforms other implementations of the noisy channel model.

Diese Visualisierung basiert auf der Einreichung OCR Nachkorrektur des Royal Society Corpus und setzt sich aus Werten für Flesch-Reading-Ease (77) und Sentimentanalyse (50) zusammen.